• Xiaomi представила умный замок-накладку с простым монтажом (2 фото)

    Xiaomi начала продажи необычного умного замка Self-Install Smart Lock. В отличие от большинства аналогов, новинка устанавливается поверх имеющегося замка без каких-либо сложных монтажных работ, а по функциональности не уступает «полноценным» конкурентам.
    Читать дальше
  • В России расширили возможности «цифрового паспорта»

    С конца февраля этого года россияне смогут более активно использовать «цифровой паспорт», доступный на портале «Госуслуги». С 27 февраля в рамках четвёртого этапа выполнения мероприятий, направленных на реализацию указа президента РФ о «цифровом паспорте», пользователям будут доступны новые возможности.
    Читать дальше
  • Российские операторы снова начали делать безлимитный интернет платным

    Российские сотовые операторы начали переводить безлимитный мобильный интернет в категорию платных услуг. Соответствующие уведомления уже получили некоторые абоненты «МегаФона» и «билайна». Эксперты рассказали, чем обусловлено это решение.
    Читать дальше
  • Электричество впервые передали с самолёта на землю (видео)

    Беспроводная передача энергии больше не выглядит как технология будущего. Технологию впервые продемонстрировали в реальных условиях — прямо с движущегося самолёта во время полёта.
    Читать дальше
  • Microsoft представила Azure Maia 200: чип с 216 ГБ памяти для работы с ИИ (2 фото)

    Microsoft представила новый ИИ-ускоритель собственной разработки. Модель Azure Maia 200, изготовленная по 3-нм техпроцессу TSMC, ориентирована на выполнение ИИ-задач с высокой скоростью.
    Читать дальше

Российские учёные создали фотонный детектор с «обонянием»

21 июля 2025 | Просмотров: 1 483 | Гаджет новости

Институт НИТУ МИСИС распространил пресс-релиз, в котором сообщил о разработке сверхчувствительного электронного «носа» — фотонного детектора для оперативного анализа содержания газов в воздухе. Прототип показал высокую надёжность и способность различать как молекулы опасных веществ, так и уровни глюкозы и спиртов в дыхании человека.

Разработка отличается массой передовых решений, включая необычный подход при создании миниатюрных газовых детекторов.

Разработка отличается рядом передовых решений, включая нестандартный подход к созданию миниатюрных газовых детекторов. Учёные создали в датчике условия, способствующие конденсации газа в жидкое состояние. Затем в дело вступает свет: особенности его распространения в образовавшейся жидкости позволяют точно определить состав вещества, распылённого в воздухе.

Технология основана на использовании фотонной интегральной схемы, на поверхность которой наносится слой наноразмерных шариков из диоксида кремния. Этот слой работает как пористая «губка»: при попадании молекул газа в структуру происходит капиллярная конденсация. Образовавшаяся жидкость изменяет оптический путь света, и эти изменения фиксируются с высокой точностью. Подобные устройства универсальны: они могут применяться для обнаружения утечек на производстве, контроля качества воздуха в городах и даже для диагностики заболеваний, таких как диабет, путём анализа выдыхаемого воздуха.

Современные газовые детекторы имеют ряд недостатков: они громоздки, чувствительны к изменениям температуры и влажности либо используют электрический ток, искра от которого может спровоцировать взрыв при определённых условиях. В отличие от них, разработка учёных из НИТУ МИСИС, Сколтеха, МПГУ, НИУ ВШЭ, ФГБУ «НМИЦ АГП им. В. И. Кулакова» и Саратовского государственного университета лишена этих недостатков. Однако успех дался нелегко.

Сложность заключалась в равномерном нанесении слоя наношариков, чтобы поверхность датчика была максимально однородно ими покрыта. Применение микрофлюидной технологии позволило создать равномерный слой с плотностью покрытия 59 %, что обеспечило высокую чувствительность и устойчивость к внешним воздействиям. Конденсация молекул газа на поверхности шариков изменяет резонансные частоты среды, а эти изменения считываются с помощью лазерного света, подводимого по волноводам. Метод абсолютно безопасен и обеспечивает высокую точность.

Перспективы применения таких детекторов весьма широки: от неинвазивной диагностики диабета путём анализа ацетона в дыхании до мониторинга утечек опасных газов на производстве и контроля загрязнений в городской среде. Теперь учёные сосредоточены на повышении технологичности, чтобы обеспечить массовое производство новых сенсоров. О потенциале датчиков и их устройстве научная группа рассказала в журнале Nanoscale.

«Мы стремились не просто к высокой точности, а к технологичности: чтобы такие сенсоры можно было массово производить и применять. Надеюсь, что в ближайшем будущем сможем довести нашу разработку от экспериментального образца до полноценного изделия», — подытожил к.ф.-м.н. Вадим Ковалюк, заведующий лабораторией фотонных газовых сенсоров НИТУ МИСИС.

Комментарии: 0

В Вашем браузере отключен JavaScript. Для корректной работы сайта настоятельно рекомендуется его включить.